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Abstract
The Manev systems are two-body problems defined by a potential of the form
a/r + b/r2, where r is the distance between the two particles, and a and b

are arbitrary constants. The Hamiltonian H = (p2
r + p2

θ /r2)/2 + a/r + b/r2

and the angular momentum pθ = r2θ̇ associated with Manev systems are two
first integrals, which are independent and in involution. Let Ih (respectively
Ic) be the set of points of the phase space on which H (respectively pθ ) takes
the value h (respectively c). Since H and pθ are first integrals, the sets Ih,
Ic and Ihc = Ih ∩ Ic are invariant under the flow of the Manev systems. We
characterize the global flow of these systems when a and b vary. Thus we
describe the foliation of the phase space by the invariant sets Ih and the foliation
of Ih by the invariant sets Ihc.

PACS numbers: 0425N, 0230H, 0240, 0240M

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

In this paper we describe the global phase portraits of the Manev systems (Maneff in German
and French spelling); i.e. a two-body problem defined by the potential of the form a/r + b/r2,
where r is the distance between the two particles and a, b are arbitrary constants.

The study of the motion of these two-body problems has a long history. As early as
in Newton’s work, discrepancies between the observed and theoretical motions of pericentres
raised the question concerning the accuracy of the Newtonian inverse square law of gravitation,
and motivated the consideration of alternative gravitational models and corrections to reconcile
these differences and obtain a satisfactory degree of agreement between the observational
evidence and theoretical predictions on the motion of celestial bodies in the solar system;
mainly the Moon, but also the planets.
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Newton was the first to consider the Manev systems with a and b positive. The reason
behind Newton’s frustration with the inverse square force law was its inability to explain the
Moon’s perigee motion. A result published in Principia (book I, section IX, proposition XLIV,
theorem XIV, corollary 2) showed that in this model the motion cannot be an ellipse, but a
precessional ellipse; i.e. one that rotates in its own plane of motion. Most of Newton’s research
on the Manev systems remained unpublished during his life-time. The 1888 catalogue of
the Portsmouth Collection of unpublished manuscripts that are stored today in the library of
Cambridge University shows Newton’s interest in this model.

The Manev potential was reconsidered by Clairaut who felt the same frustration when
trying to explain the motion of the Moon. Later, however, Clairaut found an argument within
the framework of the classical Newtonian model and abandoned the Manev model.

General relativity provided a good theory for gravitation and it was able to answer many
important questions in physics and astronomy. Unfortunately, up to now the attempts to
formulate a meaningful relativistic n-body problem have failed to provide valuable results.
Therefore, as early as the 1920s, there existed the necessity to find a model that could respond
to the theoretical needs of celestial mechanics.

It was not easy to find a suitable model that maintains the advantages of the Newtonian
one and also makes the necessary corrections such that orbits coming close to collisions match
theory with observation. The many pre- and post-relativistic attempts to obtain such models
have usually answered certain questions (such as those related to the perihelion advances of
the inner planets) but failed to explain other phenomena (such as the Moon’s motion). One
exception is the potential obtained by Manev [13–16] in the 1920s. More precisely, assigning
the mass M to the particle fixed at the origin, the unit of mass to the free particle and denoting
µ = GM , β = a/µ − 1, γ = 2bµ, where G is the constant of gravitation, the Manev
potential corresponds to the values β = 0, γ = 3µ/c2, where c is the speed of light. This
model allowed a good theoretical justification of the perihelion advance of mercury and of the
other inner planets as well as a description of the Moon’s motion. This potential was used by
Einstein himself as an approximation of relativity in order to compute the correct perihelion
advance of mercury.

The Manev potential fell into oblivion for a half century, then Hagihara [9] pointed out
that it provides the same good theoretical approximations as relativity (at least at the solar
system level). Manev systems were recently reconsidered in a series of studies having as their
starting point Diacu’s research [7]. Mioc and Stoica [19, 20] obtained the general solution
for its regularized equations, while Diacu et al [8] found the analytic solution and the local
flow near collisions showing that a black hole effect is present in this model. The isosceles
three-body case was studied by Diacu [7].

The two-body problem for the Manev potential with a, b > 0 was also tackled. Thus,
Lacomba et al [11] studied it in Hamiltonian formalism for negative energy; Delgado et al [6]
provided its analytic, geometric and physical description; Craig et al [5] studied it for the
anisotropic case. Diacu [7] pointed out the role of this potential among all quasihomogeneous
potentials within the framework of the three-body problem. For arbitrary values of a and b the
analytic solution has been obtained by Mioc and Stoica [21]; see also the study using canonical
variables by Aparicio and Florı́a [2].

For special values of a and b, various physical and astronomical problems can be modelled,
see [6] or [21]. The motion in certain post-Newtonian fields, nonrelativistic (including Manev’s
one) or relativistic (such as Fock’s one [17]) are in such a situation. The motion around an
oblate planet [22], the photogravitational field [18, 23] generated by a luminous source, or
the two-body problem with an equivalent gravitational parameter [24] also correspond to this
model. Connections with atomic physics [25], or astrophysics [7] are also possible.
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In this paper we study the global phase portrait of the Manev potential

V (r) = a

r
+

b

r2

with a, b ∈ R, using its formulation as an integrable Hamiltonian system with two degrees
of freedom. More precisely, in polar coordinates (r, θ) for the position and (pr, pθ ) for the
momenta, the Hamiltonian which governs the Manev systems is

H = 1

2

(
p2

r +
p2

θ

r2

)
+

a

r
+

b

r2
. (1)

Its Hamiltonian system is

ṙ = ∂H

∂pr

θ̇ = ∂H

∂pθ

ṗr = −∂H

∂r
ṗθ = −∂H

∂θ
= 0. (2)

Then, the Hamiltonian H and angular momentum pθ are two first integrals, independent and
in involution. Hence, the Hamiltonian system (2) is integrable.

If we denote by R+ the open interval (0, ∞), then the Manev system phase space is
E = R+ × S1 × R2 where r ∈ R+, θ ∈ S1 and (pr, pθ ) ∈ R2. Since H and pθ are first
integrals, the sets

Ih = {(r, θ, pr, pθ ) ∈ E : H(r, θ, pr, pθ ) = h}
Ic = {(r, θ, pr, pθ ) ∈ E : pθ = c}
Ihc = Ih ∩ Ic

are invariant by the Hamiltonian flow of (2).
The main results of this paper are the descriptions of the foliations of

(i) the phase space E by the invariant sets Ih,
(ii) Ih by the invariant sets Ihc, and

(iii) Ihc by the flow of the Hamiltonian system.

These foliations provide a good description of the phase portraits of the Hamiltonian flows
defined by (2) when a and b vary.

The paper is organized as follows. In section 2 we recall what the Liouville–Arnold
theory states about integrable Hamiltonian systems applied to Manev systems, and what it
does not say. In section 3 we describe the sets of critical points and critical values for the map
H : E → R. The Hill region Rh is the region of the position space where the motion of all
orbits having energy h takes place. In section 4 we classify all Hill regions for the Manev
systems according to the different values of a and b. In section 5 we study the topology of the
sets Ih when a and b change. Finally, in section 6 we describe the topology of the sets Ihc and
how these sets foliate Ih.

2. Integrable Hamiltonian systems

In this section we apply the Liouville–Arnold theorem to the integrable Hamiltonian systems (2)
defined by the Manev systems. We recall that a flow defined on a subspace of the phase space
is called complete if its solutions are defined for all time.

Liouville–Arnold theorem (Arnold 1963). The Hamiltonian system (2) with two degrees of
freedom defined on the phase space E has the Hamiltonian H and angular momentum pθ as
two independent first integrals in involution. If Ihc 
= ∅ and (h, c) is a regular value of the
map (H, pθ ), then the following statements hold:
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(a) Ihc is a two-dimensional submanifold of E invariant under the flow of (2).
(b) If the flow on a connected component I ∗

hc of Ihc is complete, then I ∗
hc is diffeomorphic

either to the torus S1 × S1, or to the cylinder S1 × R. We note that if I ∗
hc is compact (i.e.

I ∗
hc ≈ S1 × S1), then the flow on it is always complete.

(c) Under the hypothesis (b) the flow on I ∗
hc is conjugated to a linear flow either on S1 × S1,

or on S1 × R.

For more details about Hamiltonian systems and the proof of the previous theorem see
Abraham and Marsden [1] and Arnold [3,4]. We remark that in general, under the assumptions
of statement (b), I ∗

hc can also be diffeomorphic to the plane R2, but this is not the case for the
Manev systems, because they are symmetric with respect to the variable θ , and consequently
the manifolds I ∗

hc must have a factor S1.
The Liouville–Arnold theorem shows that, for integrable Hamiltonian systems, the

invariant sets associated with the intersections of all independent first integrals in involution
are generically submanifolds of the phase space. Moreover, if the flow on such submanifolds
is complete, then these submanifolds are diffeomorphic to the union of generalized cylinders
and the flow on them is conjugated to a linear flow.

What is not stated by the Liouville–Arnold theorem for our Manev systems is:

(i) What is the topology of the invariant sets Ihc when (h, c) is not a regular value of the map
(H, pθ ), and how is the flow on these invariant sets?

(ii) How the invariant sets Ihc foliate the energy levels Ih?
(iii) How the energy levels Ih foliate the phase space E?

In this paper we solve all these questions for the Manev systems. For a generic study of the
invariant sets Ihc for Hamiltonian systems of two degrees of freedom having a central potential
see Llibre and Nunes [12].

3. Critical values of H

A point (r, θ, pr, pθ ) ∈ E is critical for the map H : E → R if it is a solution of the system

∂H

∂r
= 0

∂H

∂θ
= 0

∂H

∂pr

= 0
∂H

∂pθ

= 0. (3)

The value h ∈ R is critical for the map H : E → R if there is some critical point belonging
to H−1(h) = Ih. If h ∈ R is not critical, then h is a regular value. It is well known that if
h is a regular value of the map H : E → R, then Ih is a three-dimensional manifold, see for
instance [10].

Since the r > 0 system (3) reduces to

ar + 2b = 0 pr = pθ = 0

then the set of critical points of H is

C = {(r, θ, 0, 0) ∈ E : ar + 2b = 0 and θ ∈ S1}.
Therefore, the set of critical points C is equal to

∅ if ab � 0 and a2 + b2 
= 0
{(−2b/a, θ, 0, 0) ∈ E : θ ∈ S1} if ab < 0

and
{(r, θ, 0, 0) ∈ E : (r, θ) ∈ R+ × S1} if a2 + b2 = 0.

Hence, the critical values are −a2/(4b) if ab < 0, and 0 if a2 + b2 = 0.
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4. Hill regions

Let π : E → R+ × S1 be the natural projection from the phase space E to the configuration
space R+ × S1. Then for each h ∈ R the Hill region Rh of Ih is defined by Rh = π(Ih).
Therefore

Rh =
{
(r, θ) ∈ R+ × S1 :

a

r
+

b

r2
� h

}

≈ {r ∈ R+ : hr2 − ar − b � 0} × S1 (4)

where as usual ≈ means diffeomorphic to. Note that the Hill region Rh is the region of the
configuration space or position space where the motion of all orbits having energy h takes
place.

If a < 0 and b > 0, then Rh is diffeomorphic to

∅ if h < −a2/(4b)

{a/(2h)} × S1 if h = −a2/(4b)[(
a +

√
a2 + 4bh

)/
(2h),

(
a −

√
a2 + 4bh

)/
(2h)

]
× S1 if − a2/(4b) < h < 0

[−b/a, ∞) × S1 if h = 0[(
a +

√
a2 + 4bh

)/
(2h), ∞

)
× S1 if h > 0.

If a < 0 and b = 0, then Rh is diffeomorphic to

(0, a/h] × S1 if h < 0
R+ × S1 if h � 0.

If a < 0 and b < 0, then Rh is diffeomorphic to(
0,

(
a −

√
a2 + 4bh

)/
(2h)

]
× S1 if h < 0

R+ × S1 if h � 0.

If a = 0 and b < 0, then Rh is diffeomorphic to(
0,

√
b/h

] × S1 if h < 0
R+ × S1 if h � 0.

If a = 0 and b = 0, then Rh is diffeomorphic to

∅ if h < 0
R+ × S1 if h � 0.

If a = 0 and b > 0, then Rh is diffeomorphic to

∅ if h � 0[√
b/h, ∞) × S1 if h > 0.

If a > 0 and b > 0, then Rh is diffeomorphic to

∅ if h � 0[(
a +

√
a2 + 4bh

)/
(2h), ∞

)
× S1 if h > 0.

If a > 0 and b = 0, then Rh is diffeomorphic to

∅ if h � 0
[a/h, ∞) × S1 if h > 0.
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If a > 0 and b < 0, then Rh is diffeomorphic to(
0,

(
a −

√
a2 + 4bh

)/
(2h)

]
× S1 if h < 0

(0, −b/a] × S1 if h = 0{(
0,

(
a −

√
a2 + 4bh

)/
(2h)

]
∪

[(
a +

√
a2 + 4bh

)/
(2h), ∞

)}
× S1

if 0 < h < −a2/(4b)

R+ × S1 if h � −a2/(4b).

5. Energy levels Ih

We compute the energy levels Ih in two different ways. The first way, described in this section,
is more direct. The second way, described in the next section, allows one to additionally deduce
the foliation of Ih by the invariant sets Ihc.

From the definition of Ih we have that

Ih =
⋃

(r,θ)∈Rh

E(r,θ) (5)

where

E(r,θ) =
{
(r, θ, pr, pθ ) ∈ E : p2

r +
p2

θ

r2
= 2

r2
(hr2 − ar − b)

}
.

Clearly, for each (r, θ) given the set E(r,θ) is an ellipse, a point, or the empty set if the point (r, θ)

belongs to the interior of Rh, to the boundary of Rh, or does not belong to Rh, respectively.
Therefore, from (5), the previous section and a little topology, the topology of Ih easily follows
according to the different values of h, a and b.

If a < 0 and b > 0, then Ih is diffeomorphic to

∅ if h < −a2/(4b)

S1 if h = −a2/(4b)

S3 if − a2/(4b) < h < 0
S3 \ S1 if h � 0.

The third statement follows from the fact that

Rh ≈
[(

a +
√

a2 + 4bh
)/

(2h),
(
a −

√
a2 + 4bh

)/
(2h)

]
× S1

and that

π−1
([(

a +
√

a2 + 4bh
)/

(2h),
(
a −

√
a2 + 4bh

)/
(2h)

]
× {θ}

)
≈ S2

for each fixed θ ∈ S1. Then, Ih ≈ S3 by using the Hopf fibration of S3.
The fourth statement follows from the third removing a circle. This is due to the fact that

in the variable r we have a half-closed interval, closed on the left and open on the right, instead
of a closed interval. We remark that S3 \ S1 is diffeomorphic to an open solid torus T 3 of R3.

If a � 0, b � 0 and a2 + b2 
= 0, then Ih is diffeomorphic to

S3 \ S1 if h < 0
S3 \ {S1 ∪ S1} if h � 0.

In the first statement the two removed copies of S1 are disjoint and correspond to the
endpoints of the open interval in the variable r . We note that S3 \ {S1 ∪ S1} is diffeomorphic
to R × S1 × S1.
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θ

(a) (b)

Figure 1. (a) The surface g−1(h) for either a > 0, b � 0, h > 0; a = 0, b > 0, h > 0; or a < 0,
b > 0, h � 0. (b) Manifold Ih/S1 for either a > 0, b � 0, h > 0; a = 0, b > 0, h > 0; or a < 0,
b > 0, h � 0.

If a � 0, b � 0 and a2 + b2 
= 0, then Ih is diffeomorphic to

∅ if h � 0
S3 \ S1 if h > 0.

If a = 0 and b = 0, then Ih is diffeomorphic to

∅ if h < 0
S3 \ {S1 ∪ S1} if h � 0.

If a > 0 and b < 0, then Ih is diffeomorphic to

S3 \ S1 if h � 0
{S3 \ S1} ∪ {S3 \ S1} if 0 < h < −a2/(4b)

Y if h = −a2/(4b)

S3 \ {S1 ∪ S1} if h > −a2/(4b).

Here, Y denotes the union of two open solid tori identifying point to point the points of
two circles of each torus which cannot be contracted to a single point inside the corresponding
torus. This is due to the fact that the Rh ≈ {(0, a/(2h)] ∪ [a/(2h), ∞)} × S1.

6. Invariant sets Ihc

In this section we first compute again the invariant energy levels Ih, but now use the fact that

Ih = {(r, θ, pr, pθ ) ∈ E : g(r, pr, pθ ) = h} ≈ g−1(h) × S1 (6)

where

g(r, pr, pθ ) = 1

2

(
p2

r +
p2

θ

r2

)
+

a

r
+

b

r2
.

If h ∈ R is a regular value of the map g : R+ × R2 → R and g−1(h) 
= ∅, then g−1(h)

is a surface of R+ × R2. It is easy to verify that the intersection of g−1(h) with {r = r0 =
constant}, is an ellipse, a point, or the empty set according to whether hr2

0 −ar0 −b is positive,
zero, or negative, respectively. So, by studying the union of the ellipses or points of the form
g−1(h)∩{r = r0} moving r0 > 0, we obtain the sets g−1(h). Therefore, from (6), we calculate
in a different way (with respect to the previous section) the topology of the energy levels Ih.

We note that knowing the sets g−1(h), from

Ihc = Ih ∩ {pθ = c} ≈ (g−1(h) ∩ {pθ = c}) × S1 (7)
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θ

1

2> 2

< 1<0

= 0= + ∞

1 2< <

2 < 2

1

(a)

(b)

Figure 2. (a) The surface g−1(h) for a > 0, b < 0 and h > −a2/(4b). (b) Manifold Ih/S1 for
a > 0, b < 0 and h > −a2/(4b).

we can compute the invariant sets Ihc. Consequently, we can describe the foliation of Ih by
Ihc when h varies. In fact we need to study in detail only nine foliations of Ih by Ihc, because
the study of the remaining cases are topologically equivalent.

Case 1: a > 0, b � 0, h > 0; a = 0, b > 0, h > 0; and a < 0, b > 0, h � 0.
Under these assumptions the surface g−1(h) is the topological plane of figure 1(a). The curves
γhc = g−1(h) ∩ {pθ = c} for each c ∈ R are defined for all r > r(c) > 0 and homeomorphic
to R.

The manifold Ih is homeomorphic to S3\S1; that is, the solid torus of dimension 3 without
a boundary obtained by rotating figure 1(b) around the e axis. In this picture we can see how
the cylinders Ihc foliate the solid torus. We can also see how the flow moves on the cylinders
Ihc.

Case 2: a > 0, b < 0 and h > −a2/(4b). Under these assumptions the surface g−1(h) is
the topological cylinder of figure 2(a). Here, g−1(h) ∩ {r = r0} is an ellipse for each r0 > 0.
When we consider the curves γhc = g−1(h)∩{pθ = c} for each c ∈ R, we need to distinguish
four subcases. Thus the curve γhc has

• two components, each one defined for all r > 0 and homeomorphic to R, if 0 � |c| <

c1 =
√

−(a2 + 4bh)/(2h);
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2> 2

< 2

2> 2

= − −2
= + ∞

= 0

(a)

(b)

Figure 3. (a) The surface g−1(h) for a > 0, b < 0 and h = −a2/(4b). (b) Manifold Ih/S1 for
a > 0, b < 0 and h = −a2/(4b).

• only one component topologically homeomorphic to the shape of the letter X, which
can be obtained as a limiting case of the previous statement identifying a point of both
components, if |c| = c1;

• two components homeomorphic to R, one defined in 0 < r � r1 and the other defined in
r2 � r < ∞ with r1 < r2, if c1 < |c| < c2 = √−2b (of course, when |c| tends to c1 the
two curves tend to the unique curve of the previous statement, and r1 and r2 tend to the
same value); and

• one component homeomorphic to R, defined in 0 < r2 � r < ∞, if c2 � |c|.
The manifold Ih is homeomorphic to S3 \ {S1 ∪S1}. That is, the solid torus of dimension

3 without the boundary and without the central circular axis. This topological space can be
obtained by rotating figure 2(b) around the e axis. In this picture we can see how

• the cylinders Ihc for |c| � c2;
• the two cylinders form Ihc for c1 < |c| < c2;
• the Ihc for c = c1 (respectively c = −c1) is formed by the periodic orbit α (respectively

β) together with their four invariant cylinders: two of them form the stable manifold of α

(respectively β) and the other two the unstable manifold of α (respectively β); and
• the two cylinders form Ihc for 0 � |c| < c1;

foliate Ih. We can also see how the flow moves on the Ihc surfaces.
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Case 3: a > 0, b < 0 and h = −a2/(4b). Now the surface g−1(h) is the topological cone
of figure 3(a). In fact figure 3(a) comes from figure 2(a) collapsing the circle contained in the
plane r = −(2b)/a to the point (r, pr, pθ ) = (−(2b)/a, 0, 0) when h > −a2/(4b) tends to
−a2/(4b). When we consider the curves γhc = g−1(h) ∩ {pθ = c} for each c ∈ R, we need
to distinguish three subcases. Thus the curve γhc has

• only one component topologically homeomorphic to the shape of the letter X, if c = 0;
• two components homeomorphic to R, one defined in 0 < r � r1 and the other defined in

r2 � r < ∞ with r1 < r2, if 0 < |c| < c2 (again, when |c| tends to 0 the two curves tend
to the unique curve of the previous statement, and r1 and r2 tend to −(2b)/a); and

• one component homeomorphic to R, defined in 0 < r2 � r < ∞, if c2 � |c|.
The manifold Ih ≈ Y is homeomorphic to two copies of a solid torus without the boundary

which have their central circular axis identified. The two copies of the solid torus without the
boundary can be obtained by rotating figure 3(b) around the e axis, and Ih is obtained by
identifying the central circular axis of both tori. Thus in Ih we can see that

• the central circular axis is a periodic orbit, having two unstable invariant manifolds and
two stable invariant manifolds, each of these four manifolds is diffeomorphic to a cylinder,
and every solid torus contains one unstable and one stable invariant manifold. The periodic
orbit and its four invariant manifolds form the invariant set Ihc for c = 0;

• two cylinders form Ihc for 0 < |c| < c2, each contained in a different solid torus;
• one cylinder Ihc for c2 � |c|, these cylinders are contained into the same solid torus.

All these invariant sets Ihc foliate Ih, as is shown in figure 3(b). We can also see how the flow
moves on the surfaces Ihc.

Case 4: a > 0, b < 0 and 0 < h < −a2/(4b). In this case the surface g−1(h) is
homeomorphic to two planes, see figure 4(a). Roughly speaking, figure 4(a) comes from
figure 3(a) when the cone splits into two topological planes. When we consider the curves
γhc = g−1(h)∩{pθ = c} for each c ∈ R, we need to distinguish two subcases. Thus the curve
γhc has

• two components homeomorphic to R, one defined in 0 < r � r1 and the other defined in
r2 � r < ∞ with r1 < r2, if 0 � |c| < c2; and

• one component homeomorphic to R, defined in 0 < r2 � r < ∞, if c2 � |c|.
The manifold Ih is homeomorphic to two copies of a solid torus without the boundary. It

can be obtained by rotating figure 4(b) around the e axis. In this picture we can see that

• two cylinders Ihc for 0 � |c| < c2 (each contained in a different solid torus);
• one cylinder Ihc for c2 � |c| (these cylinders are contained in the same solid torus);

that foliate Ih. We can also see how the flow moves on the cylinders Ihc.

Case 5: a > 0, b < 0, h � 0; and a = 0, b < 0, h < 0. Under these assumptions the
surface g−1(h) is the topological plane of figure 5(a). The curves γhc = g−1(h) ∩ {pθ = c}
for each c ∈ R are defined for all r in 0 < r < r(c) and are homeomorphic to R.

The manifold Ih is homeomorphic to a solid torus without the boundary. It can be obtained
by rotating figure 5(b) around the e axis. In this picture we can see one cylinder Ihc for every
c ∈ R foliating Ih. We can also see how the flow moves on the cylinders Ihc.
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Figure 4. (a) The surface g−1(h) for a > 0, b < 0 and 0 < h < −a2/(4b). (b) Manifold Ih/S1

for a > 0, b < 0 and 0 < h < −a2/(4b).

θ

2

(a) (b)

Figure 5. (a) The surface g−1(h) for a > 0, b < 0, h � 0; and a = 0, b < 0, h < 0. (b) Manifold
Ih/S1 for a > 0, b < 0, h � 0; and a = 0, b < 0, h < 0.

Case 6: a = 0, b = 0, h > 0; and a < 0, b � 0, h � 0. In this case the surface
g−1(h) is homeomorphic to a cylinder S1 × R, see figure 6(a). When we consider the curves
γhc = g−1(h)∩{pθ = c} for each c ∈ R, we need to distinguish two subcases. Thus the curve
γhc has

• one component homeomorphic to R if c 
= 0; and
• two components each homeomorphic to R if c = 0.
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(a)

(b)

Figure 6. (a) The surface g−1(h) for a = 0, b = 0, h > 0; and a < 0, b � 0, h � 0. (b) Manifold
Ih/S1 for a = 0, b = 0, h > 0; and a < 0, b � 0, h � 0.

The manifold Ih is homeomorphic to a solid torus without the boundary and the central
circular axis. It can be obtained by rotating figure 6(b) around the e axis. In this picture we
can see that

• one cylinder Ihc for every c ∈ R \ {0}; and
• two cylinders Ihc for c = 0;

foliate Ih. We can also see how the flow moves on the cylinders Ihc.

Case 7: a < 0, b > 0 and −a2/(4b) < h < 0. In this case the surface g−1(h)

is homeomorphic to a sphere S2, see figure 7(a). When we consider the curves γhc =
g−1(h) ∩ {pθ = c} for each c ∈ R, we need to distinguish two subcases. Thus the curve
γhc has

• one component homeomorphic to a point if |c| = c1; and
• one component homeomorphic to S1 if 0 � |c| < c1.

The manifold Ih is homeomorphic to S3. In this case S3 is foliated by the Ihc as in the
Hopf foliation, i.e. Ihc is a periodic orbit (topologically a circle) when |c| = c1, and a two-
dimensional torus when |c| < c1. This foliation is presented in figure 7(b), where we can
obtain the sphere S3 identifying the points (of the two surfaces of the cones glued by their
bases) which are symmetric with respect to the plane containing the common bases. We can
also see how the flow moves on the torus Ihc for |c| < c1.
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(a) (b)

θ

Figure 7. (a) The surface g−1(h) for a < 0, b > 0, −a2/(4b) < h < 0. (b) Manifold Ih (modulo
identifications) for a < 0, b > 0, −a2/(4b) < h < 0.
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θ

Figure 8. (a) The surface g−1(h) for a < 0, b = 0, h < 0. (b) Manifold Ih/S1 for a < 0, b = 0,
h < 0.

Case 8: a < 0, b = 0, h < 0. Under these assumptions the surface g−1(h) is the topological
plane of figure 8(a). The curves γhc = g−1(h) ∩ {pθ = c} for each |c| � c3 are defined for all
r in 0 < r < r(c) and are homeomorphic to

• one component homeomorphic to a point if |c| = c3;
• one component homeomorphic to S1 if 0 < |c| < c3; and
• one component homeomorphic to R if c = 0.

The manifold Ih is homeomorphic to a solid torus without the boundary. It can be obtained
by rotating figure 8(b) around the e axis. In this picture we can see that

• one cylinder Ihc for c = 0;
• one two-dimensional torus Ihc for 0 < |c| < c3; and
• one periodic orbit (topologically a circle) Ihc for |c| = c1;

foliate Ih. We can also see how the flow moves on the surfaces Ihc.

Case 9: a < 0, b < 0, h < 0. Under these assumptions the surface g−1(h) is the topological
plane of figure 9(a). The curves γhc = g−1(h) ∩ {pθ = c} for each |c| � c1 are defined for all
r in 0 < r < r(c) and are homeomorphic to
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Figure 9. (a) The surface g−1(h) for a < 0, b < 0, h < 0. (b) Manifold Ih/S1 for a < 0, b < 0,
h < 0.

Table 1. The invariant set Ih and its foliation by Ihc for a > 0.

Ih g−1(h) Ihc Ih/S1

b > 0 h > 0 S3 \ S1 1a S1 × R if c ∈ R 1b

h � 0 ∅ ∅
b = 0 h > 0 S3 \ S1 1a S1 × R if c ∈ R 1b

h � 0 ∅ ∅⋃
2

S1 × R if 0 � |c| < c1

h > − a2

4b
S3 \ {S1 ∪ S1} 2a

S1⋃
2

S1 × R if |c| = c1 2b

⋃
2

S1 × R if c1 < |c| < c2

b < 0 S1 × R if c2 � |c|
S1⋃
2

S1 × R if c = 0

h = − a2

4b
Y 3a

⋃
2

S1 × R if 0 < |c| < c2 3b

S1 × R if c2 � |c|

0 < h < − a2

4b

⋃
2

(S3 \ S1) 4a
⋃

2

S1 × R if 0 � |c| < c2 4b

S1 × R if |c| � c2

h � 0 S3 \ S1 5a S1 × R if 0 � |c| < c2 5b

• one component homeomorphic to a point if |c| = c1;
• one component homeomorphic to S1 if c2 < |c| < c1; and
• one component homeomorphic to R if 0 � c � c2.

The manifold Ih is homeomorphic to a solid torus without the boundary. It can be obtained
by rotating figure 9(b) around the e axis. In this picture we can see that

• one cylinder Ihc for 0 � |c| � c2;
• one two-dimensional torus Ihc for c2 < |c| < c1; and
• one periodic orbit (topologically a circle) Ihc for |c| = c1;
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Table 2. The invariant set Ih and its foliation by Ihc for a = 0.

Ih g−1(h) Ihc Ih/S1

b > 0 h > 0 S3 \ S1 1a S1 × R if c ∈ R 1b

h � 0 ∅ ∅
h > 0 S3 \ {S1 ∪ S1} 6a

⋃
2

S1 × R if c = 0 6b

b = 0 S1 × R if |c| 
= 0

h = 0 R × S1 S1 × R if c = 0

h < 0 ∅ ∅
b < 0 h � 0 ∅ ∅

h < 0 S3 \ S1 5a S1 × R if 0 � |c| < c2 5b

Table 3. The invariant set Ih and its foliation by Ihc for a < 0.

Ih g−1(h) Ihc Ih/S1

b > 0 h � 0 S3 \ S1 1a S1 × R if c ∈ R 1b

− a2

4b
< h < 0 S3 7a S1 if |c| = c1

S1 × S1 if 0 � |c| < c1

h = − a2

4b
S1 S1 if c = 0

h < − a2

4b
∅ ∅

h � 0 S3 \ {S1 ∪ S1} 6a
⋃

2

R × S1 if c = 0 6b

b = 0 R × S1 if |c| 
= 0

S1 if |c| = c3

h < 0 S3 \ S1 8a S1 × S1 if 0 < |c| < c3 8b

S1 × R if c = 0

h � 0 S3 \ {S1 ∪ S1} 6a
⋃

2

R × S1 if � |c| � c2 6b

b < 0 R × S1 if |c| > c2

S1 if |c| = c1

h < 0 S3 \ S1 9a S1 × S1 if c2 < |c| < c1 9b

R × S1 if 0 � |c| � c2

foliate Ih. We can also see how the flow moves on the surfaces Ihc.
In tables 1–3, we summarize the foliation of Ih by Ihc for all values of a and b. In these

tables we have that c1 =
√

−(a2 + 4bh)/(2h), c2 = √−2b and c3 =
√

−a2/(2h).

7. Conclusions

The paper provides a description of the global flow of the two–body problem defined by the
Manev potential of the form a/r + b/r2, where r is the distance between two particles which
are moving in a plane. This motion is of interest in many different kinds of physical and
astronomical problems.
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The problem here considered is a particular case of an integrable Hamiltonian system with
two degrees of freedom. The two first integrals, which are independent and in involution are the
Hamiltonian H and the angular momentum pθ . Then the phase space is foliated by the invariant
sets lhc, i.e. the set of points (r, θ, pr, pθ ) of the phase space having H(r, θ, pr, pθ ) = h and
pθ = c. One of the main contributions of this paper is the study and classification of the
invariant sets Ihc.
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